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Abstract

A weak Legendre spectral method is developed for the solution of the primitive variable formulation of the unsteady

incompressible Navier–Stokes equations, in general two-dimensional and axisymmetric geometries. A semi-implicit

projection method is utilized for the temporal approximation and for decoupling the velocity field from the pressure

field. A series of elliptic boundary value problems arises from the above procedure, each of which is spatially discretized

by a weak collocation method in multiple nonoverlapping subdomains. In particular, a modified variational formu-

lation of the partial differential equations is presented which leads, after discretization, to a weak multidomain ap-

proximation of the corresponding problems. A weak formalism for the influence matrix technique is also developed,

which is consistent with the spatial discretization scheme and successfully separate the equations for the internal nodes

from the ones governing the interface unknowns. A method of dealing with the singularity problem faced by the weak

formulation at axisymmetric problems is proposed, while a combination of direct methods is studied for tackling ef-

fectively the linear algebraic systems resulting from the full discretization. Exponential convergence is demonstrated for

a plethora of Stokes and Navier–Stokes simulations.
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1. Introduction

Spectral methods form an efficient and highly accurate family of techniques for solving differential and

integral equations [1,2]. Their utilization in computational fluid dynamics has proven to be very profitable,

particularly when accuracy plays a fundamental role [3–6]. Domain decomposition algorithms, on the other
hand, have helped spectral methods to overcome some of their inherent limitations, extending their ap-

plicability in complex geometries and allowing them to exploit modern parallel computer architectures.
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Spectral domain decomposition methods have successfully found their way through the fields of both in-

compressible [7,8], as well as compressible [9–11] flow simulations.

In the present paper, we present a combination of a nonoverlapping Legendre spectral collocation domain

decomposition method, with a semi-implicit projection scheme in order to compute steady and unsteady

solutions of the incompressible Navier–Stokes equations in general two-dimensional and axisymmetric

domains. The temporal discretizationmethod belongs to the class of time-splitting algorithms [12–18] used to

decouple the velocity from the pressure calculations. As for the spatial discretization of the elliptic scalar

problems that stem from the application of the above scheme, we utilize a modified variational formulation,
which leads to a discrete weak Legendre collocation approximation in multiple subdomains. This technique

has been used before, in [19], to treat simple elliptic equations in rectangularly decomposable domains and in

[9] to deal with the interface conditions for the viscous terms at compressible simulations. It can be viewed as a

special form of the so-called penalty method used for incompressible simulations in [20] and is similar but

different from the spectral flux balance interface technique [21–23]. An analysis of the Chebyshev approxi-

mation is considered in [24]. We use this method both for imposing Neumann boundary conditions with

enhanced accuracy and for treating naturally the equations that govern the interface unknowns. We also

provide a unified form of the method, which is able to handle effectively unstructured subdomain decom-
positions by treating successfully nodes that belong simultaneously to the Neumann portion of the boundary

and to two or more subdomains. We apply this method to the solution of the incompressible flow equations

and find that it overcomes many of the difficulties faced by the strong collocation approximation when

applied to mixed Dirichlet–Neumann boundary value problems in generally decomposed curvilinear to-

pologies.We also furnish a weak formulation of the widely used influence matrix technique (see [25,26]), so as

to combine it successfully with the spatial discretization method in order to perform a decoupling of the

equations for the internal nodes from those that govern the interface and some of the boundary unknowns.

When the above methods are applied to axisymmetric problems, they encounter a singularity on the axis of
symmetry, despite the fact that boundary conditions have to be imposed in order to close the system of discrete

equations. A similar problem has been dealt before in [27] by transforming the dependent variables of the flow

field. With such a method, the calculation of the primitive variables on the axis of symmetry becomes very

difficult (if not impossible) in generally decomposeddomain configurations, since the transformation performed

is not invertible at the axis. We propose a method which is very well suited to the overall scheme used and ac-

complishes to eliminate the pole singularity that appears in the differential equations and boundary conditions,

while allowing the usage of general domain decompositions and exhibiting spectrally converged results.

Finally, in an attempt to increase the efficiency of direct methods in multiple domain algorithms, we
study the collaboration of the LU-factorization method with the matrix-diagonalization one, in the

framework of complete Navier–Stokes simulations. The method proposed here has many differences from

other well-established domain decomposition methods (like the spectral element method) basically in the

context of the spatial discretization and which will become clear after the subsequent presentation.

This paper is organized as follows. Section 2 gives the basic primitive variable form of the incompressible

Navier–Stokes equations. In Section 3, the temporal discretization scheme is briefly reviewed. The spatial

approximation method for model elliptic problems as well as some aspects of its implementation to the full

system of the flow equations are presented in Section 4. Finally, Section 5 is devoted to the study of various
simulation results, beginning from simple problems and endingwith complicated incompressible flow solutions.
2. Incompressible Navier–Stokes equations

We consider a two-dimensional open and bounded domain X � R2 with a Lipschitz continuous

boundary oX, and a time interval I ¼ ð0; T � � R. The Navier–Stokes equations that govern the motion of

an incompressible fluid with constant viscosity in nondimensional form read:
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D½u*� ¼ 0;

ou
*

ot
þ N

*

½u*� ¼ �G
*

½p� þ 1

Re
L
*

½u*� þ f
* ð1Þ

in X, for all t 2 I . In these equations, the dimensional variables of space ðx*0Þ, time ðt0Þ, velocity ðu*0Þ,
pressure ðp0Þ, and body force per unit volume ðf

*0Þ have been scaled by:

x
* ¼ x

*0=lr;
t ¼ t0=ðlr=ku
*
rkÞ;
u
* ¼ u

*0=ku*rk;
p ¼ p0=ðqku*rk2Þ;
f
*

¼ f
*0
=ðqku*rk2=lrÞ;

where ku*rk is a reference velocity magnitude, lr is a reference length scale and q is the constant density. The

Reynolds number is defined as Re ¼ ku*rklrq=l, where l is the fluid viscosity. It is clear that the pressure

variable in the incompressible Navier–Stokes equations acts as a Lagrange multiplier that ensures the

solenoidity of the velocity vector field. In order to define the form of the differential operators that appear

in the Navier–Stokes equations, we need to distinguish between two-dimensional flows and axisymmetric
ones. For two-dimensional flows we use a Cartesian frame of reference and denote the spatial coordinates

as ðx; yÞ. On the other hand, when we deal with an axisymmetric problem, we use a cylindrical frame of

reference where x is the axial coordinate and y is the radial one. Accordingly, u is the axial and v the radial
velocity components. By using this notation, we have:

D½u*� ¼ ou
ox

þ ov
oy

þ a
v
y
;

N
*

½u*� ¼
u ou

ox þ v ou
oy

u ov
ox þ v ov

oy

 !
;

G
*

½p� ¼
op
ox
op
oy

 !
;

L
*

½u*� ¼
o2u
ox2 þ o2u

oy2 þ a 1
y
ou
oy

o2v
ox2 þ o2v

oy2 þ a 1
y

ov
oy � v

y2

� �
0
@

1
A;

where a ¼ 0; 1 for two-dimensional and axisymmetric flows, respectively.
The set of equations (1) must be equipped with proper boundary and initial conditions. The boundary

oX can be decomposed into two open, bounded and mutually disjoint sets namely Cu
D and Cu

N such that
�CCu
D [ �CCu

N ¼ oX; Cu
D \ Cu

N ¼ 0, on which the boundary conditions for the u-component of the velocity vector

are imposed. In a similar way, we define two sets Cv
D and Cv

N for the boundary conditions of the v-velocity
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component. Four scalar fields are set as gu : C
u
D � I ! R; gv : C

v
D � I ! R; hu : C

u
N � I ! R and

hv : C
v
N � I ! R. The boundary conditions that must be specified on oX are:

u ¼ gu on Cu
D; t 2 I ;

v ¼ gv on Cv
D; t 2 I ;

ð2aÞ
ou
on

¼ ru � n* ¼ hu on Cu
N; t 2 I ;

ov
on

¼ rv � n* ¼ hv on Cv
N; t 2 I :

ð2bÞ

The boundary conditions (2a) are of Dirichlet type and must satisfy the compatibility condition thatR
oX g

* � n* ¼ 0 if �CCu
D ¼ �CCv

D ¼ oX 8t 2 I , with g
* ¼ ðgu; gvÞ, while the boundary conditions (2b) are of

Neumann type with n
*

the outward unit normal vector on oX. We must say that here and in some parts

of the following text, we indicate neither the integration measure dx
*
in the double integrals nor dr in the

line integrals, for the sake of simplicity. The initial condition that must be specified for the velocity field

is:

u
* ¼ u

*
0 in X; for t ¼ 0;

with u
*
0 : X ! R2. The choice of the initial velocity field is not arbitrary. It must certainly be divergence-

free, so that the continuous problem has a classical solution. A more rigorous discussion on the set of
compatibility conditions that the initial condition must satisfy is supplied in [28]. Notice that no boundary

or initial conditions are required for the pressure.

Let us define, at this point, some functional spaces that will prove to be very helpful in the subsequent

discussion. We shall indicate with ½LpðXÞ�2 ð16 p61Þ, the space of vector functions F
*

: X ! R2 whose

components belong to LpðXÞ, and with ½HmðXÞ�2 ðm ¼ 0; 1; 2; . . .Þ, the space of vector functions whose

components belong to the Sobolev space of mth order HmðXÞ. If we derive the weak form of Eq. (1)

considering the boundary and initial conditions, it is clear that we have the velocity field belonging to the

space:

Qv ¼ fu* 2 ½H 1ðXÞ�2 ju ¼ gu on Cu
D and v ¼ gv on Cv

Dg;

and the pressure to the space:

Qp ¼ p 2 L2ðXÞ
Z
X
p

����
�

¼ 0 if �CCu
D ¼ �CCv

D ¼ oX

�
;

while f
*

belongs to the dual space of Qv for all times.
3. Temporal approximation method

In this section we use the method of lines in order to discretize the temporal differential operators while
leaving the spatial ones continuous and so formulating a semi-discrete version of the Navier–Stokes

equations. We utilize the projection method which was originally proposed by Hugues and Randria-

mampianina [16], and was implemented in the framework of the strong Chebyshev spectral collocation

approximation. This projection method is second order accurate in both velocity and pressure and is based

on a combination of Adams–Bashforth and backward differentiation formula schemes. The fractional steps

proceed as follows (the superscripts denote the discrete time levels):
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• Pressure predictor step:

Solve at each time step, the elliptic equation:

D½G
*

½�ppnþ1�� ¼ D½�2N
*n þ N

*n�1 þ f
*nþ1�

in X, with:

o�ppnþ1

on
¼ n

* � �3g
*nþ1 þ 4u

*n � u
*n�1

2Dt

(
� 2N

*n þ N
*n�1 þ 1

Re
2R
*n

�
� R

*n�1

�
þ f

*nþ1

)

on Cu
D \ Cv

D and appropriate Dirichlet or Neumann boundary conditions imposed on oX n ðCu
D \ Cv

DÞ.
The diffusion operator R

*

is defined as:

R
*

½u*� ¼ G
*

½D½u*�� � L
*

½u*�
and has this form, in order to improve the stability of the solution (see also [12,13,15]).

• Velocity predictor step:

Next solve the following equation:

L
*

½u*�� � 3Re
2Dt

u
*� ¼ Re

�4u
*n þ u

*n�1

2Dt

(
þ 2N

*n � N
*n�1 þ G

*

½�ppnþ1� � f
*nþ1

)

in X, with:

u� ¼ gnþ1
u on Cu

D;

v� ¼ gnþ1
v on Cv

D;

ou�

on
¼ hnþ1

u on Cu
N;

ov�

on
¼ hnþ1

v on Cv
N:

• Correction step:

Finally, solve the elliptic equation:

D½G
*

½~ppnþ1�� ¼ D½u*��

in X, with:

o~ppnþ1

on
¼ 0 on Cu

D \ Cv
D;

and problem-dependent Dirichlet or Neumann boundary conditions on oX n ðCu
D \ Cv

DÞ. Then compute

the corrected pressure and velocity fields:

pnþ1 ¼ �ppnþ1 þ 3

2Dt
~ppnþ1;

u
*nþ1 ¼ u

*� � G
*

½~ppnþ1�

in �XX ¼ X [ oX.
For the initial step we have used a consistent first-order method to start the scheme.
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This projection method is very efficient and possesses a good temporal behavior for sufficiently large time

integration. In the subsequent sections concerning the spatial approximation, we use polynomials of the

same degree for both the velocity components as well as for the pressure, in order to facilitate the multi-

domain implementation of the algorithm. The above-mentioned time-splitting scheme uses the normal

momentum equation at the boundary to close the discrete system, rather than the incompressibility equa-

tion. With this technique, there is no need of satisfying any form of compatibility condition between the

function spaces that the velocity and pressure fields belong to (like the inf–sup condition), since there are no

spurious pressure modes present in the solution. At the end of the correction step the final velocity field is
divergence-free at all the inner collocation points, but the boundary condition on the tangential velocity

component is not exactly satisfied. The error term (slip velocity) is numerically checked to be OðDt3Þ and, as a
consequence, its effect on the overall accuracy of the method is negligible. This time discretization procedure

decomposes the solution of the Navier–Stokes equations into a cascade of elliptic kernels (namely Helmholtz

and Poisson equations for the two-dimensional case). In the following section, we demonstrate an efficient

way of solving these problems in the framework of a weak spectral multidomain collocation discretization.
4. Spatial approximation method

In the following sections, we deal with both the continuous and discrete versions of the spatial ap-

proximation method applied to a generic form of a linear elliptic boundary value problem. Subsequently,

we report some of the algorithmic aspects which can be used in order to make the scheme computationally

efficient and finally we comment on the implementation of the method to the semi-discretized form of the

Navier–Stokes equations.

4.1. Continuous formulation

In this section, we focus on the spatial approximation of general elliptic partial differential equations of

second order in a two-dimensional space. Let us define a linear operator of the form:

L½u� ¼ �
X2
i¼1

X2
j¼1

o

oxi
aij

ou
oxj

� �
þ
X2
j¼1

aj
ou
oxj

þ a0u;

where we have used the notation that x
* ¼ ðx1; x2Þ ¼ ðx; yÞ is a point in R2. We assume that the coefficients

aij; aj; a0 are functions of the spatial-independent variables and belong to L1ðXÞ. The above operator is said
to be elliptic in X, if for every x

* 2 X the following relation holds:

X2
i¼1

X2
j¼1

aijðx
*Þninj 6¼ 0 for every n

*

6¼ 0
*

and strongly elliptic, if there exists a constant l > 0, such that:

X2
i¼1

X2
j¼1

aijðx
*Þninj P l

���n*��� for every n
*

2 R2 and every x
* 2 X:

Suppose that we have the following elliptic boundary value problem:

L½u� ¼ f in X;
u ¼ g on CD;
ou
onL

¼ h on CN;

������ ð3Þ
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with: ou=onL ¼ D
*

L½u� � n
* ¼

P2

i¼1

P2

j¼1 aijðou=oxjÞni, and CD \ CN ¼ 0; �CCD [ �CCN ¼ oX. The above problem is

a general form of the elliptic kernels which the Navier–Stokes equations are decomposed into, by the time

discretization method. The variational formulation of this problem reads:

u 2 U ¼ fu 2 H 1ðXÞ ju ¼ g on CDg;
aðu; vÞ ¼ bðvÞ 8v 2 V ¼ fv 2 H 1ðXÞ jv ¼ 0 on CDg;

���� ð4Þ

where the above bilinear and linear forms are given as:

aðu; vÞ ¼
Z
X

Z X2
i¼1

X2
j¼1

aij
ou
oxj

ov
oxi

 
þ
X2
j¼1

aj
ou
oxj

vþ a0uv

!
;

bðvÞ ¼
Z
X

Z
fvþ

Z
CN

hv:

We have silently assumed that the functions f ; h belong to L2ðXÞ. The classical solution of the boundary

value problem (3) is proven to be also a weak solution to the variational formulation (4).

Next, we subdivide the computational domain X, into quadrilateral nonoverlapping subdomains

Xm; m 2 M (M being a set of positive integers) each of which is open and bounded, in a structured or

generally unstructured way so as �XX ¼
S

m2M
�XXm, and Xk \ Xl ¼ 0 for k 6¼ l. The assumptions we make on

this subdivision are that we allow the closures of two neighboring subdomains to intersect only at a point or

along an entire side, and that the subdomain boundaries do not move in time. We also define

Cm
N ¼ oXm \ CN. After all of these, the functionals that appear in the variational formulation take the

following form:

aðu; vÞ ¼
X
m2M

Z
Xm

Z X2
i¼1

X2
j¼1

amij
oum

oxj

ovm

oxi

 (
þ
X2
j¼1

amj
oum

oxj
vm þ am0 u

mvm
!)

;

bðvÞ ¼
X
m2M

Z
Xm

Z
f mvm

(
þ
Z
Cm
N

hmvm
)
;

where we have indicated by zm the restriction of the function z to the subdomain Xm.
In view of describing the discrete formulation of the boundary value problem, we shall alter the above

variational form first by making a few more stringent assumptions on the regularity of the function u. To
this end, we assume that:

u 2 ÛU ¼ fu 2 H 2ðXÞ ju ¼ g on CDg;

and we see that the bilinear form a is equivalent to:

aðu; vÞ ¼
X
m2M

Z
Xm

Z
Lm½um�vm

8<
: þ

I
oXm

D
*m

L ½um� � n
*m

� �
vm

9=
;:

By the superscript m on the differential operators, we indicate not only the restriction of their action on the

subspace of functions defined on Xm, but also the replacement of the coefficient functions by their re-
strictions in the specific subdomain. It is obvious that with the above form we only require:

v 2 V̂V ¼ fv 2 L2ðXÞ jv ¼ 0 on CDg:
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We assume that there exists a family of isomorphisms (continuous and invertible operators) F
*m

; m 2 M ,

that map each of the quadrilateral subdomains �XXm onto the reference square (or parent element)
�DD ¼ ½�1; 1�2, in such a way that the subdomain border oXm is also mapped on the reference one oD. We

denote any point in �DD by the ordered pair of real numbers r
* ¼ ðr1; r2Þ ¼ ðr; sÞ and any point in �XXm by

x
*m ¼ ðxm; ymÞ. By usage of the above notation, we can write:

F
*m

: �DD ! �XXm; F
*m 2 ½C2ð �DDÞ�2 : x*m ¼ F

*mð r*Þ; m 2 M :

The operators F
*m

are vector-valued functions which are initially unknown, but we postpone their de-

scription until the discussion about the discrete system of equations. At this point, we have for each
subdomain the scalar functions:

xm ¼ xmðr; sÞ;
ym ¼ ymðr; sÞ

for jrj; jsj6 1;m 2 M . The transformation Jacobian is defined by the formula:

Jm ¼ oxm

or
oym

os
� oxm

os
oym

or
;

for m 2 M and is different from zero for every point in each subdomain. Moreover, the Jacobian never

changes sign inside a subdomain and if Jm > 0 then the boundary oXm is positively oriented.

We now discuss the calculation of the double and line integrals that appear in the linear forms of the

variational formulation, under the above-mentioned coordinate transformation. For a function

qm 2 L2ðXmÞ, we have:Z
Xm

Z
qm ¼

Z 1

s¼�1

Z 1

r¼�1

qmðxmðr; sÞ; ymðr; sÞÞjJmðr; sÞjdrds:

Let us define the four sides of the subdomain �XXm as Cm;p; p ¼ 1; . . . ; 4, so that
S4

p¼1
�CCm;p ¼ oXm. In the

same manner, we define the four sides of the parent element �DD as Sp; p ¼ 1; . . . ; 4, with
S4

p¼1
�SSp ¼ oD.

Specifically, we set:

S1 ¼ f r* ¼ ðr; sÞ 2 oD j s ¼ �1; jrj < 1g;
S2 ¼ f r* ¼ ðr; sÞ 2 oD j r ¼ 1; jsj < 1g;
S3 ¼ f r* ¼ ðr; sÞ 2 oD j s ¼ 1; jrj < 1g;
S4 ¼ f r* ¼ ðr; sÞ 2 oD j r ¼ �1; jsj < 1g:

As we have already mentioned, the coordinate transformation operator maps each of the Cm;p onto each

of the Sp, so that we can symbolically write Cm;p ¼ F
*mðSpÞ;m 2 M ; p ¼ 1; . . . ; 4. Suppose that we have a

vector-valued function Q
*m 2 ½L2ðoXmÞ�2, then the formula for the evaluation of the line integral is:

I
oXm

Q
*m � n*m ¼

X4
p¼1

(Z 1

r¼�1
Sp

Q
*mðxmðr; sÞ; ymðr; sÞÞ � N

*m;p
drp

)
;
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where:

drp ¼ dr on S1; S3;
ds on S2; S4;

�

N
*m;p ¼ Op

1O
m
2N
*m;p

0 ;
Op
1 ¼

1 on S1; S2;
�1 on S3; S4;

�

Om
2 ¼ signðJmÞ;
N
*m;p

0 ¼
oym

or ;� oxm

or

	 

on S1; S3;

oym

os ;� oxm

os

	 

on S2; S4:

(

Exactly in the same way, if we are given the function qm ¼ Q
*m � n*m 2 L2ðoXmÞ, then the line integral takes

the form:I
oXm

qm ¼
X4
p¼1

(Z 1

r¼�1
Sp

qmðxmðr; sÞ; ymðr; sÞÞ N
*m;p
��� ��� drp

)
:

After all of these, the modified variational formulation of the generalized boundary value problem (3), is:

u 2 ÛU ;
aðu; vÞ ¼ bðvÞ 8v 2 V̂V ;

���� ð5Þ

where:

aðu; vÞ ¼
X
m2M

R 1

s¼�1

R 1

r¼�1
Lm½umðxmðr; sÞ; ymðr; sÞÞ�vmðxmðr; sÞ; ymðr; sÞÞjJmðr; sÞjdrds

þ
P4
p¼1

�R 1

r¼�1
Sp

D
*m

L ½umðxmðr; sÞ; ymðr; sÞÞ� � N
*m;p

� �
vmðxmðr; sÞ; ymðr; sÞÞdrp

�
8>><
>>:

9>>=
>>;
bðvÞ ¼
X
m2M

R 1

s¼�1

R 1

r¼�1
f mðxmðr; sÞ; ymðr; sÞÞvmðxmðr; sÞ; ymðr; sÞÞjJmðr; sÞjdrds

þ
P
p2Pm

�R 1

r¼�1

Sp

hmðxmðr; sÞ; ymðr; sÞÞvmðxmðr; sÞ; ymðr; sÞÞ N
*m;p
��� ���drp

�
8>>><
>>>:

9>>>=
>>>;

and Pm being the index set defined as:

Pm ¼ p j1
n

6 p6 4; Cm;p � Cm
N; C

m;p ¼ F
*mðSpÞ;m 2 M

o
:

4.2. Discrete formulation

In this section, we proceed by deriving the discrete version of the modified variational formulation of the

generalized boundary value problem. Given a positive integer N , we define the space PNð �DDÞ, to be the space
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of continuous functions up to the boundary f : �DD ! R, such that f is an algebraic polynomial of degree

less or equal than N in each independent spatial variable. The approximants umN of the restrictions um of u, in
each subdomain, belong to PN ð �DDÞ.

In order to define the spectral collocation method, we need to introduce a set of distinct points

(pseudospectral grid), that covers the closed parent element �DD. We consider the integer vector index

j
*

¼ ðj1; j2Þ; 06 j1; j2 6N and define the set:

J ¼ j
*n
¼ ðj1; j2Þ; 06 j1; j2 6N j r*

j
* ¼ ðrj1 ; sj2Þ 2 �DD

o
:

By using this set, we can express the collocation grid on �DD as the set of nodes r
*

j
*; j

*

2 J . In a similar manner,

we define the boundary index sets to be:

Jp
b ¼ j

*n
¼ ðj1; j2Þ; 06 j1; j2 6 N j r*

j
* ¼ ðrj1 ; sj2Þ 2 �SSp

o
; p ¼ 1; . . . ; 4:

After the application of the coordinate transformation operators F
*m

; m 2 M we can calculate the grids

x
*m

j
* ¼ ðxmj1 ; y

m
j2
Þ ¼ F

*mð r*
j
*Þ 2 �XXm; j

*

2 J , that cover each subdomain. Next, we introduce a global numbering

of nodes by assigning a different scalar index to each node and define the set:

JG ¼ fl j x*l ¼ ðxl; ylÞ 2 �XXg;

where l is a positive integer. The dimension of this set is equal to the total number of the grid points. By

using such a notation, we are able to write the whole mesh as x
*
l; l 2 JG. Similarly, we can denote the

subsets of the indices of the nodes, in the global numbering system, on which we impose Dirichlet or

Neumann boundary conditions as JG
b;D � JG and JG

b;N � JG, respectively.

It is now necessary to define an operator G : M � J ! JG which determines the correlations between the
subdomains, the local and the global indices. Given the index of a specific subdomain (say m) and the local

index of a node which belongs to this subdomain (say j
*

), we get after the application of the above operator,

the index l ¼ Gðm; j
*

Þ, of the specific node in the global numbering system. By this, we mean that:

x
*
l ¼ x

*m

j
* ¼ F

*mð r*
j
*Þ; m 2 M ; j

*

2 J ; l 2 JG:

It is obvious that since a given node may belong to more than one subdomains, the operator G is not

invertible.

A tensor-product Lagrange basis of PN ð �DDÞ is defined by the relations:

/ j
*

ð r*Þ : �DD ! R; j
*

2 J ;
/ j
*

ð r*Þ ¼ Cj1ðrÞCj2ðsÞ 2 PN ð �DDÞ;
Cj1ðrÞ;Cj2ðsÞ : ½�1; 1� ! R;
CbðtaÞ ¼ dba ¼
0; a 6¼ b;
1; a ¼ b;

�
ta 2 ½�1; 1�; 06 a; b6N ;
/ j
*

ð r*
i
*Þ ¼ d j

*

i
* ¼ 0; i

*

6¼ j
*

;

1; i
*

¼ j
*

;

(
i
*

; j
*

2 J :
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In this way, we are able to express the approximants umN as:

umN ð r
*Þ ¼

X
j
*
2J

umN
� �

j
*/ j

*

ð r*Þ;

where: humN i j* ¼ umNð r
*

j
*Þ ¼ umN ðrj1 ; sj2Þ.

The coordinate transformation operators are actually calculated by the isoparametric technique (see

[2,4,7,10]), meaning that the geometric variables are defined by the same interpolation rules as the unknown

function of the differential equation, namely:

x
*m
N 2 ½PN ð �DDÞ�2 : x

*m
N ð r

*Þ ¼ F
*m

N ð r
*Þ ¼

X
j
*
2J

x
*m
N

D E
j
*/

j
*

ð r*Þ:

First, the physical mesh is specified on the subdomain boundaries: x
*m
N ð r

*

j
*Þ; j 2 Jp

b ; p ¼ 1; . . . ; 4;m 2 M ,

then by using interpolation with bilinear blending functions, the remaining internal grid points are cal-

culated. The Jacobian and metric factors needed in the differential and integral expressions are calculated

pseudospectrally, meaning that all the approximate derivatives are computed by differentiating the inter-
polants at the collocation nodes. It is now the appropriate time to say that the discrete spatial approxi-

mation must be conforming so that the grid lines coincide along subdomain boundaries. Actually, we can

also have different polynomial orders in each independent spatial variable and in each subdomain as long

as the approximation remains conforming, but then the whole presentation would become extremely

complicated.

Next, we fix a family of weights wj > 0; 06 j6N , and set the bilinear form:

ðf ; gÞN ¼
X
j
*
2J

fh i
j
* gh i

j
*x

j
*;

where: hf i
j
* ¼ f ðrj1 ; sj2Þ; hgi j* ¼ gðrj1 ; sj2Þ; and x

j
* ¼ wj1wj2 . By the existence of the above-mentioned

Lagrange basis, this form is ensured to be a discrete inner product on PNð �DDÞ. If we specify the r
*

j
* and

x
j
*; j

*

2 J , to be the knots and weights, respectively, of quadrature formulas of Gaussian type, then we can

approximate the double integral
R 1

s¼�1

R 1

r¼�1
fgdrds by ðf ; gÞN , with maximum precision. Under the same

reasoning, we may write:Z 1

r¼�1
Sp

f drp ¼
X
j
*
2Jpb

fh i
j
*xp

j
*;

where:

xp

j
* ¼ wj1 ; p ¼ 1; 3;

wj2 ; p ¼ 2; 4:

�

Before proceeding with the discretization of the modified variational formulation, we need to define the

global Lagrange functions and their restrictions to the subdomains, because they will play the role of the

discrete test functions which are necessary for arriving to the final discrete system of equations. Towards

that, we define:

vl : �XX ! R; l 2 JG;
vl 2 C0ð�XXÞ;
vlðx*kÞ ¼ dl ; k; l 2 JG:
k
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Suppose now, that we have two specific grid points, namely, x
*
k; x

*
l, for some k; l 2 JG. The first one belongs

to a collection of subdomains, say, �XXm; m 2 Bk � M , while the second one belongs to the �XXm; m 2 Bl � M .

We define the sets Ck ¼ M n Bk and Cl ¼ M n Bl to be the sets of the indices of the subdomains that do not

contain x
*

k and x
*
l, respectively. For a specific subdomain �XXm; m 2 Bk \ Bl (we silently suppose Bk \ Bl to be

a nonempty set), there are correlations between the global indices k; l 2 JG and some local ones, say

i
*

m; j
*

m 2 J , defined by the relations:

k ¼ Gðm; i
*

mÞ;
l ¼ Gðm; j
*

mÞ:

We define the restriction of vl in �XXm, as the function vl;m 2 C0ð�XXmÞ which has the property vl;mðx*kÞ ¼ d j
*

m

i
*

m

.

Moreover, if m 2 Cl then vl;m ¼ 0 8x* 2 �XXm, and if m 2 Bl but m 2 Ck then vl;mðx*kÞ ¼ 0. Next, we use

Lagrange functions with the property that vl;m 2 PNð �DDÞ if m 2 Bl, and so we symbolically write:

vl;m ¼ vl;mN ¼ / j
*

m if m 2 Bl:

Let us denote by the subscript N at the expressions of the differential forms, the approximations to these

operators, which are obtained by replacing the exact derivatives by collocation ones. For convenience we
use the notation hf i

i
* ¼ f ðri1 ; si2Þ, i

*

2 J , and hgik ¼ gðxk; ykÞ, k 2 JG, for functions that are correspondingly

defined on �DD and �XX. Then the discrete form of the modified variational formulation (5) is:

uN 2 ÛUN ;
aN ðuN ; vlN Þ ¼ bN ðvlNÞ 8vlN 2 V̂VN ;

���� ð6Þ

where the spaces of trial and test functions are, respectively, defined to be:

ÛUN ¼ fuN : �XX ! R; uN 2 C0ð�XXÞ jumN 2 PN ð �DDÞ in �XXm; m 2 M ; huN il ¼ gh il for l 2 JG
b;Dg;
V̂VN ¼ fvlN : �XX ! R; vlN 2 C0ð�XXÞ; l 2 JG jvl;mN 2 PN ð �DDÞ in �XXm; m 2 M ; vlN ¼ 0 for l 2 JG
b;Dg:

The linear forms that appear, are given by the following formulas:

aN ðuN ; vlN Þ ¼
X
m2M

X
i
*
2J

Lm
N ½umN �

� �
i
*h/ j

*

mi
i
* Jm

N

�� ��� �
i
*x

i
*

8><
>: þ

X4
p¼1

X
i
*
2Jpb

D
*m

LN
½umN � � N

*m;p
D E

i
*h/ j

*

mi
i
*xp

i
*

0
B@

1
CA
9>=
>;;
bN ðvlN Þ ¼
X
m2M

X
i
*
2J

f mh i
i
*h/ j

*

mi
i
* Jm

N

�� ��� �
i
*x

i
*

8><
>: þ

X
p2Pm

X
i
*
2Jpb

hmh i
i
*hkN

*m;pki
i
*h/ j

*

mi
i
*xp

i
*

0
B@

1
CA
9>=
>;:

Eq. (6) is essentially different from the one encountered in classical spectral element algorithms, since it

results from the discretization of the modified variational formulation (5), instead of the more commonly
used form (4).

In the present work, we have utilized a Legendre method (see [1]), which means that the knots and

weights defined above, are actually the ones of the Legendre–Gauss–Lobatto quadrature formula. Like-

wise, the Lagrange basis is defined on the Gauss–Lobatto points and the pseudospectral approximation of

the continuous differential operators is generated by using Legendre collocation derivatives. We could have
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used a Chebyshev method (similar to [9]), with weights given by the Clenshaw–Curtis integration formula,

but we chose not to do so, in order to maintain maximum precision in the discrete evaluation of the integral

forms.

In this section, we described the discrete multidomain version of the weak formulation of a general

elliptic boundary value problem of second order. At the inner collocation points of each subdomain, the

discrete equations obtained from this method are exactly the same as those obtained from the strong

collocation formulation. The Dirichlet conditions are enforced exactly at each node of the Dirichlet

boundary, in both methods. The differences between the weak and the strong formalisms, occur at the
discrete equations for the nodes that lie on the Neumann boundary and on the interface between subdo-

mains. At each node of the Neumann boundary, the boundary condition is specified up to a small constant

(which vanishes as N ! 1) multiplied by the pseudospectral residual at the same node. This weak im-

position makes the utilization of Neumann boundary conditions as outflow conditions in Navier–Stokes

simulations efficient, because there is no generation of numerically induced oscillations at the outflow

boundary (see [29]). We also find that the type of interface condition which results from the weak for-

mulation is clearer and has advantages at points where more than two subdomains meet, over the strong C1

enforcement that is traditionally used with the strong formalism. Moreover, at corner points which belong
to the Neumann boundary and also to two or more subdomains, the weak formalism faces no problem,

while the condition that should be used with a strong collocation method is totally unclear. Before ending

this section, we should mention that extreme caution is necessary when writing or programming the discrete

equations at corner points, where contributions from the neighboring sides of the subdomains should be

taken under consideration, according to the condition which has to be imposed on the particular point

(Neumann condition, interface condition or both).

4.3. Weak formulation of the influence matrix method

In the numerical implementation of the present domain decomposition method, we wish to find a way

to decouple the calculation of the solution in the subdomains from that on the interface and on a certain

portion of the Neumann boundary. A commonly used algorithm for this kind of work at a discrete level,
is the so-called influence matrix method. By utilizing such a technique, we are able to obtain the solution

of the global system at the cost of two local solutions in each subdomain, plus a solution of a problem

concerning the interface and boundary values we wish to uncouple. Further we require the calculation of

the so-called discrete Green�s functions and the formation of the influence matrix, which can be done once

and for all in a preprocessing stage of the calculations. In this section, we set a weak formalism for this

method, which fits well the above mentioned variational formulation of the boundary value problem

and subsequently discuss some algorithmic aspects for a successful numerical implementation of this

technique.
Let us say that a certain node belongs to the interface, if and only if it belongs to two or more sub-

domains and it is not contained in the Dirichlet portion of the boundary. We denote the set of scalar indices

of these nodes by JG
I , in the global numbering system. For reasons which concern the solution method of

the linear algebraic systems resulting from the discrete version of the equations and that will become clear

later, we wish to distinguish certain nodes that belong to the Neumann boundary and in order to do so, we

indicate the set of their global indices as JG
N . In the following discussion, we shall also need the union of the

above sets, namely JG
S ¼ JG

I [ JG
N .

Let us define two discrete projection operators as:

T S ½eN � ¼ eNh il; l 2 JG
S ;
TD½eN � ¼ heN il; l 2 JG
b;D;
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for every eN 2 EN ¼ feN : �XX ! R; eN 2 C0ð�XXÞ jemN 2 PN ð �DDÞ in �XXm; m 2 Mg. Next, we perform a decompo-

sition:

uN ¼ ua;N þ ub;N ; uN 2 ÛUN ; ð7Þ

such that:

T S ½ua;N � ¼ 0;
T S ½ub;N � ¼ T S ½uN �;
TD½ua;N � ¼ TD½uN �;
TD½ub;N � ¼ 0:

From the linearity of the above operators as well as of the forms included in the variational formulation

of the problem, we conclude that the original problem (6) is equivalent to the following decomposed

form:

ua;N 2 ÛUN ;a;
aN ðua;N ; vlN Þ ¼ bN ðvlN Þ 8vlN 2 V̂VN ;d ;

���� ð8Þ
ub;N 2 ÛUN ;b;
aN ðub;N ; vlN Þ ¼ 0 8vlN 2 V̂VN ;d ;

���� ð9Þ

along with conditions (7) and:

aN ðua;N ; vlNÞ þ aN ðub;N ; vlN Þ ¼ bN ðvlN Þ 8vlN 2 V̂VN ;S ; ð10Þ

where:

ÛUN ;a ¼


ua;N : �XX ! R; ua;N 2 C0ð�XXÞ juma;N 2 PN ð �DDÞ in �XXm; m 2 M ;

ua;Nh ik ¼ 0 for k 2 JG
S ; ua;Nh ik ¼ gh ik for k 2 JG

b;D

�
;

ÛUN ;b ¼


ub;N : �XX ! R; ub;N 2 C0ð�XXÞ jumb;N 2 PN ð �DDÞ in �XXm; m 2 M ;

ub;N
� �

k
¼ uNh ik for k 2 JG

S ; ub;N
� �

k
¼ 0 for k 2 JG

b;D

�
;

V̂VN ;d ¼


vlN : �XX ! R; vlN 2 C0ð�XXÞ; l 2 JG jvl;mN 2 PNð �DDÞ in �XXm; m 2 M ; vlN ¼ 0 for l 2 JG

b;D [ JG
S

�
;

V̂VN ;S ¼


vlN : �XX ! R; vlN 2 C0ð�XXÞ; l 2 JG

S jvl;mN 2 PNð �DDÞ in �XXm; m 2 M
�
:

At this point we can only solve problem (8), which amounts to computing uncoupled solutions of the

restrictions uma;N ; m 2 M within each subdomain. Problem (9) and conditions (10) are coupled together with
the unknown nodal values huN ik; k 2 JG

S . In order to solve the problem concerning the function ub;N , we
need to perform a further decomposition, namely:

ub;N ¼
X
k2JGS

uNh ikGk
N ; ð11Þ
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where we have indicated as Gk
N ; k 2 JG

S , the discrete Green�s functions (see [2]). Since the operator T S is

linear, we have:

T S ½uN � ¼ T S ½ua;N þ ub;N � ¼ T S ½ua;N � þ T S ½ub;N � ¼ T S½ub;N � ¼
X
k2JGS

uNh ikT S ½Gk
N �:

In view of the fact that:

T S ½ub;N � ¼ T S ½uN � ¼ uNh il; l 2 JG
S ;

we have:

T S ½Gk
N � ¼ Gk

N

� �
l
¼ dkl ; l; k 2 JG

S : ð12Þ

Also:

TD½ub;N � ¼ 0 ()
X
k2JGS

uNh ikT D½Gk
N � ¼ 0 () T D½Gk

N � ¼ 0 () Gk
N

� �
l
¼ 0; k 2 JG

S ; l 2 JG
b;D:

ð13Þ

By inserting the expression (11) into problem (9) and by using (12) and (13), it is obvious that the discrete

Green�s functions for every k 2 JG
S , are calculated by solving the following problems:

Gk
N 2 ÛUN ;G;

aN ðGk
N ; v

l
N Þ ¼ 0 8vlN 2 V̂VN ;d ; k 2 JG

S ;

����
where:

ÛUN ;G ¼


Gk

N : �XX ! R; Gk
N 2 C0ð�XXÞjGk;m

N 2 PN ð �DDÞ in �XXm; m 2 M ;

Gk
N

� �
l
¼ dkl for l 2 JG

S ; Gk
N

� �
l
¼ 0 for l 2 JG

b;D

�
:

So far, we have indicated the way to calculate all the discrete Green�s functions and the particular solution

ua;N . What remains to be found, is the set of the nodal values huN ik; k 2 JG
S . This results from conditions (10)

after using relation (11), which read:X
k2JGS

uNh ikaNðGk
N ; v

l
NÞ ¼ bNðvlN Þ � aN ðua;N ; vlNÞ 8vlN 2 V̂VN ;S ;

where: Gk
N 2 ÛUN ;G; ua;N 2 ÛUN ;a.

At the discrete level, the set of numbers:

½IM �lk ¼ aN ðGk
N ; v

l
N Þ; k 2 JG

S ; Gk
N 2 ÛUN ;G; vlN 2 V̂VN ;S

constitute the components of the influence matrix.

There are many situations, met usually when dealing with time discretized evolution equations, when we
need to solve elliptic boundary value problems, characterized by the same differential operator, at different

time levels. This is actually the case, when solving the unsteady incompressible Navier–Stokes equations by

a time-splitting scheme, as previously described. In such situations, it is wise to solve for the discrete Green�s
functions at a preprocessing stage of the calculations. Moreover, it is highly recommended to calculate the

components of the influence matrix and store them in a convenient form depending on the solution method

utilized, thus avoiding the great memory requirements needed for the storage of each one of the discrete

Green�s functions. By using such a technique, at every time level the given elliptic problem can be
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decomposed into a series of solutions for the functions uma;N in each subdomain (which are completely

decoupled), plus a solution of the influence matrix problem and finally a series of solutions for the functions

umN ; m 2 M with the correct boundary values imposed as Dirichlet conditions. This algorithm constitutes a

very efficient way of dealing with time dependent equations whose discretization leads to linear elliptic

boundary value problems to be solved at each time level and it is the one utilized in the subsequent Navier–

Stokes simulations.

4.4. Aspects of the fully discretized form of the Navier–Stokes equations

As already mentioned, the temporal discretization scheme, decomposes the solution of the full Navier–

Stokes equations into a sequence of elliptic problems to be solved at each time level. These problems are

spatially approximated by the usage of the weak Legendre collocation spectral multidomain method, de-
scribed in the preceeding sections. Here, we comment on some issues which arise from the implementation

of the combination of the temporal and spatial schemes to the Navier–Stokes equations, as well as on the

solution methods utilized to solve the final linear algebraic systems.

We begin by reporting some very important modifications which must be performed on the discrete

forms of the elliptic problems, when dealing with axisymmetric flows. On the axis of symmetry ðy ¼ 0Þ,
boundary conditions should be specified so that the problem to be well defined. These conditions, namely

‘‘symmetry conditions’’, have the following form:

ou
on

¼ 0; v ¼ 0;
op
on

¼ 0:

As we have mentioned, the weak imposition of Neumann boundary conditions at the discrete level, involves

the calculation of the pseudospectral residual of the differential equations on the given grid node. In view

of the fact that the differential equations governing both the velocity and pressure variables, are singular on

the axis of symmetry, we need to modify the discrete variational statements. The new formulation of the

linear forms occurring in the variational formulation of the boundary value problems, is:

aN ðuN ; vlN Þ ¼
X
m2M

X
i
*
2J

ðymÞcLm
N ½umN �

� �
i
*

D
/ j

*

m

E
i
* Jm

N

�� ��� �
i
*x

i
*

8><
>:

þ
X4
p¼1

X
i
*
2Jp

b

ðymÞcD
*m

LN
½umN � � N

*m;p
D E
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*

D
/ j

*

m

E
i
*x

p

i
*

0
B@

1
CA
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>;;

bN ðvlN Þ ¼
X
m2M

X
i
*
2J

ðymÞcf mh i
i
*

D
/ j

*

m

E
i
* Jm

N

�� ��� �
i
*x

i
*

8><
>: ð14Þ

þ
X
p2Pm

X
i
*
2Jpb

ðymÞchmh i
i
* kN

*m;pk
D E

i
*

D
/ j

*

m

E
i
*x

p

i
*

0
B@

1
CA
9>=
>;;

where c is the order of the pole y ¼ 0 of the coefficient functions of each differential equation, namely one

for the equations that govern the pressure and the u-component of the velocity vector, and two for the

remaining equation governing the v-velocity component equation. Throughout this section, we indicate by l
and j

*

m the global and local indices, respectively, that are correlated by the relation l ¼ Gðm; j
*

mÞ, where m
belongs to the set of indices of all the subdomains in which the certain node is contained. The test and trial
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function spaces along with the boundary and initial conditions, remain unchanged by these modifications

(in contrast with [27]). The above functionals are actually the ones that appear in the discrete form of the

weak formulation of appropriately modified elliptic boundary value problems so that the desired elimi-

nation of the singularity has been accomplished. We included the equation for the radial velocity com-

ponent in the above modifications, in case we need to impose a Neumann boundary condition on a node

belonging to the axis of symmetry. With such a technique, the poles of the differential equations and of the

boundary condition at the pressure predictor step, are efficiently eliminated. The same symmetry boundary

conditions are prescribed at a two-dimensional symmetric flow, but in this case there is no singularity on the
symmetry axis and the above treatment is no longer necessary.

At the interface nodes, where two or more subdomains meet and there is no Dirichlet boundary con-

dition prescribed, the condition stemming from the weak formulation is not equivalent to the strong en-

forcement of C1 continuity in all cases except in the limit N ! 1. This fact has as a consequence the failure

of the vorticity field to be globally continuous. Precisely, xm
N 2 C1ðXmÞ, m 2 M , but xN 2 L2ðXÞ only. A

more important implication, is that the corrected velocity field calculated by strong collocation at each

discrete time level, is also discontinuous. Although this fact has not caused any problems in any of the

Navier–Stokes simulations, we used in some of them, the method of weak collocation updating (see [5]) as
an attempt to improve the quality of the results. For the sake of completeness, we shall briefly describe its

implementation. Suppose that we have a relationship of the form:

u ¼ �uuþ ~uu;

where �uu 2 C0ð�XXÞ and u, ~uu 2 L2ðXÞ. After multiplying by a suitably integrable function and integrating, we get:Z
X

Z
uv ¼

Z
X

Z
�uuvþ

Z
X

Z
~uuv for v 2 L2ðXÞ;

which is equivalent to:

X
m2M

Z
Xm

Z
umvm ¼

X
m2M

Z
Xm

Z
�uumvm þ

X
m2M

Z
Xm

Z
~uumvm:

Suppose, now, that we have a certain node x
*

l for some l 2 JG
I , which belongs to the interface. This node

belongs to a set of subdomains �XXm, m 2 Bl � M . The above equation, written in discrete form for this

specific node, becomes (by using the properties of the Lagrangian base):X
m2Bl

umN
� �

j
*

m
Jm
N

�� ��� �
j
*

m
x

j
*

m
¼
X
m2Bl

h�uumN i j*m
Jm
N

�� ��� �
j
*

m
x

j
*

m
þ
X
m2Bl

h~uumNi j*m
Jm
N

�� ��� �
j
*

m
x

j
*

m
:

Since we want u 2 C0ð�XXÞ, we have:

X
m2Bl

Jm
N

�� ��� �
j
*

m
x

j
*

m

 !
umN
� �

l
¼

X
m2Bl

Jm
N

�� ��� �
j
*

m
x

j
*

m

 !
h�uumN il þ

X
m2Bl

h~uumN i j*m
Jm
N

�� ��� �
j
*

m
x

j
*

m

and so:

umN
� �

l
¼ h�uumNil þ

P
m2Bl

h~uumN ijm* jJm
N j

� �
jm
*x

jm
*P

m2Bl
jJm

N jh i
jm
*x

jm
*

for every m 2 Bl. This procedure is repeated for every node which belongs to the interface, so that at the
end, the function u to be globally continuous.
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Next, a few comments are deserved by the incompressibility constraint. In every subdomain, the con-

dition r � u* ¼ 0 is met at every inner collocation node in the strong collocation sense at each time level.

Since a problem dependent boundary condition is prescribed at the Dirichlet boundary for the pressure, the

final velocity field fails to be solenoidal locally. At a point belonging to the interface, say x
*

l; l 2 JG
I which

belongs to the family of subdomains X
m
 �

m2Bl
, we apply (along with the continuity condition which is

implemented implicitly by the influence matrix method) the interface condition resulting from the weak

formulation of the problem. This means that we cannot impose the conditions of incompressibility

r � u*
m

N ¼ 0;m 2 Bl in a strong collocation form, so such conditions can only be fulfilled at the limit of
infinite resolution. In order to clarify the above allegations, we proceed by first applying the divergence

operator on the corrected velocity field:

D½u*nþ1� ¼ D½u*�� � D½G
*

½~ppnþ1��:

After multiplication by a suitable test function m 2 L2ðXÞ, and after taking under consideration the mod-

ifications for the axisymmetric case, we integrate over X and get:Z
X

Z
yaD½u*nþ1�m ¼

Z
X

Z
yaD½u*��m�

Z
X

Z
yaD½G

*

½~ppnþ1��m;

where a ¼ 0; 1 for two-dimensional and axisymmetric flows, respectively. In order to be consistent with our

previous definitions, we indicate the differential operator and the right hand side function that appear in the

pressure corrector boundary value problem as: L½~ppnþ1� ¼ �D½G
*

½~ppnþ1�� and f ¼ �D½u*��. We incorporate the

domain decomposition idea and so the above relationship transforms into:

X
m2M

Z
Xm

Z
ðymÞaDm½u*nþ1;m�mm

� �
¼
X
m2M

Z
Xm

Z
ðymÞaLm½~ppnþ1;m�mm

�
�
Z
Xm

Z
ðymÞaf mmm

�
:

If we suppose that m 2 V̂V and we use the variational formulation of the pressure corrector equation to
manipulate the right-hand side, we result at:

X
m2M

Z
Xm

Z
ðymÞaDm½u*nþ1;m�mm

� �
¼
X
m2M

Z
Cm
N

ðymÞahmmm
(

�
I
oXm

ðymÞa D
*m

L ½~ppnþ1;m� � n*m
� �

mm
)
:

By following a similar procedure, as we already have in the proceeding sections, we arrive to the following

discretized form:

X
m2M

X
i
*
2J

ðymÞaDm
N ½u
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D E
i
*

D
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*
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*
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which applies for test functions that belong to an appropriate function space. Dm
N ½�� is the discrete divergence

operator in subdomain Xm, and all the remaining notations correspond to the discrete variational form of

the pressure corrector equation. So, for a certain node x
*
l for some l 2 JG n JG

b;D, relation (15) expresses the
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necessary condition which the discrete divergence of velocity is forced to fulfill, by the weak approximation

method. It is obvious that when x
*

l is an internal node of a certain subdomain, then the discrete divergence

is equal to zero, but when x
*

l belongs to the interface or to the pressure Neumann boundary (or to both),

then the velocity field fails to be solenoidal at the neighborhood of that node, although the spectral method

guarantees an exponential decay of the absolute value of the discrete velocity divergence. For axisymmetric

problems, we are not provided with any information concerning the nodes on the axis of symmetry, where

the discrete divergence itself is singular. Finally, we need to point out that if we use weak collocation

updating, locally at the interface nodes, then the divergence of velocity differs from zero also at the inner
collocation nodes of each subdomain.

When we face a Dirichlet problem for the velocity, then we have a Neumann problem for the pressure

which is not well posed. In order to render a unique solution, we drop one collocation condition at a point

and instead we fix the discrete mean value of the pressure to be equal to zero, namely:

X
m2M

X
i
*
2J

pmN
� �

i
* Jm

N

�� ��� �
i
*x

i
*

0
@

1
A ¼ 0:

In the present work, the usual (convective) form of the advection terms is discretized. There has not been

found any form of instability stemming from this usage even for marginal resolution simulations (see
[30,31]). We have, also, discretized the skew-symmetric form of the operator which produced the same

results, so we decided not to implement it finally, because of the larger number of operations needed to

calculate the discrete terms.

The only disadvantage of the application of the weak collocation method and the chosen projection

method for the temporal approximation, we detected, is an instability which occurs when significantly

decreasing the time step, while keeping the spatial resolution fixed. Such a behavior is still present when a

single domain method is used, but it is not observed when a strong collocation approximation is utilized.

Therefore, we are led to believe that this instability stems from the weak imposition of the Neumann
boundary conditions at the pressure calculation steps of the time splitting technique. To be more precise,

the weak imposition of the homogeneous Neumann boundary condition at the pressure correction step

causes the failure of the final velocity field to satisfy the condition u
*nþ1 � n* ¼ g

*nþ1 � n* on the velocity Di-

richlet boundary Cu
D \ Cv

D. Then, an error occurs in evaluating the right-hand side of the Neumann

boundary condition at the pressure predictor step, which is large when Dt is small and consequently de-

stabilizes the system. The substitutions u
*n � n* ¼ g

*n � n* and u
*n�1 � n* ¼ g

*n�1 � n* at the first term of the right

hand side of the Neumann boundary condition at the pressure predictor step completely eliminate this

instability for steady state problems and considerably improve the behavior of the method at time de-
pendent simulations, but may induce larger pressure errors especially at poorly and moderately resolved

calculations. Such an instability appears in a much weaker form even when we use a different time splitting

scheme (similar to the one proposed in [13]) where the pressure and velocity steps are inverted. This method

provides accurate results but presents the drawbacks of larger pressure and divergence errors. For well-

resolved flows, the time step that results in the destabilization of the system in our simulations was found

to be very small (comparable to the machine precision), practically unusable for actual computations.

Simultaneous increase of the spatial resolution, when significantly decreasing the time step, is strongly

recommended to avoid this situation with the weak formalism.
Before we end this section, it is necessary to say a few words about the solution method employed to

solve the linear algebraic systems resulting from the discretization of the elliptic problems. In all simulations

and subdomain topologies, the influence matrix problems were solved at each time step by a standard LU-

factorization method, where the influence matrices corresponding to each problem (velocity or pressure)

were factorized and stored in a preprocessing stage. As far as the local problems in the individual sub-

domains are concerned, we made a distinction between subdomains with curvilinear boundaries (or linear
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but not orthogonal ones), in which the equations were solved by LU-factorization combined with diagonal

scaling (see [19]), and orthogonal subdomains where we used the tensor-product diagonalization algorithm

(see [1,2,6,27]). The standard form of the matrix-diagonalization method needs Dirichlet boundary con-

ditions in order to work and that is the reason why we included some of the nodes belonging to the

Neumann boundary, in the influence matrix problems. This means that at the orthogonal subdomains, the

Neumann boundary conditions were converted to Dirichlet ones through the influence matrix technique so

that the diagonalization method to be applicable. The combination of the LU-factorization and matrix-

diagonalization methods was found to be very efficient numerically, as long as the number of the non-
orthogonal subdomains was kept at a low level. The resulting simulation code is so efficient that all of the

results to be shown in this paper were obtained on a 2.4 GHz Pentium Personal Computer.
5. Stokes and Navier–Stokes solutions

In this section, we concern ourselves with solutions of the Stokes and the Navier–Stokes equations, by

using the temporal and spatial approximation methods described above. Spatial spectral accuracy as well as
temporal second order accuracy is confirmed. First, we check the monodomain algorithm at a boundary

value problem with a nonempty Neumann boundary set. In order to do this, we use the Hamel flow test

problem, in two different domain configurations. Then, we study the convergence properties of the scheme

in a complex geometry problem, namely the Wannier flow, and examine the performance of the computer

codes in curvilinear geometries. Subsequently, we proceed by computing the steady state solution of the

Kovasznay problem, which is the first full Navier–Stokes simulation at low Reynolds number that we

perform. To show the ability of the method to handle unstructured domain decomposed topologies and

also to study the temporal properties of the algorithm, we use the well known transient Taylor–Green
vortex solution. So far, we have dealt with analytical solutions of model problems. Next, we present the

steady state solution of the regularized lid driven cavity problem, while comparing our results with other

published ones, and finally perform an axisymmetric simulation in a stenosed pipe.

Before we actually proceed with the specific test cases, we should comment, for a while, on the norms

used for convergence to steady state and for comparisons to the analytical solutions. When solving for a

steady state of a function (say u) by means of a time integration method, we march in pseudotime and hope

that by adjusting the spatial and temporal resolutions according to the specified data of the problem, we

shall end with convergence. We set the sequence un ¼ uðx*; n � DtÞ; x
* 2 X, n ¼ 0; 1; . . ., and we accept that it

is a Cauchy sequence in a Banach space X ðXÞ, namely, for each positive integer e > 0, there exists an integer

N ¼ NðeÞ > 0, such that the norm uk � ulk kX between any two elements of the sequence is smaller than e,
provided both k; l are larger than N . We consider the case when the two elements of the sequence are two

successive approximations of the steady-state solution ðk ¼ nþ 1; l ¼ nÞ, so by determining the Banach

space X (and consequently its norm �k kX ) we can study the convergence of the method in pseudotime. In the

subsequent simulations, we have utilized the discrete forms of the following norms:

X ðXÞ ¼ L1ðXÞ : uk kL1 ¼ sup
x
*2X

uðx*Þ
��� ���;
X ðXÞ ¼ L2ðXÞ : uk kL2 ¼
Z
X

Z
uj j2

� �1=2

;

X ðXÞ ¼ H 1ðXÞ : uk kH1 ¼
Z
X

Z
juj2
"(

þ ou
ox

� �2

þ ou
oy

� �2
#)1=2

;
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where the derivatives that appear are considered in the distributional sense. The same norms were used in

order to compare the computed ðucÞ to the exact ðueÞ solutions and in this case we computed the form:

uc � uek kX . For steady-state problems, uc is the final converged function, while for transient problems, the

variables uc; ue can be evaluated at any time level, we wish the comparison to be performed.

5.1. Hamel flow

We begin the numerical tests by employing the monodomain method, in order to solve the Stokes flow in

a two-dimensional symmetric divergent channel. This problem was first solved by Hamel and the exact

solution reads (see [32]):

ueðx; yÞ ¼
Qx

x2 þ y2
x2 � y2

x2 þ y2

�
� cosð2aÞ

�
1

sinð2aÞ � 2a cosð2aÞ ;
veðx; yÞ ¼
Qy

x2 þ y2
x2 � y2

x2 þ y2

�
� cosð2aÞ

�
1

sinð2aÞ � 2a cosð2aÞ ;

where Q is the flow rate, 2a is the total angle of the diverted channel and ðx; yÞ are the spatial coordinates in
a Cartesian frame of reference. The problem was solved for two different domain configurations with angles

a ¼ 5� and a ¼ 20�, respectively. The meshes, for a polynomial order of N ¼ 11, are presented in Fig. 1. The

computational region was bounded by the lines: y ¼ 0; x ¼ 1:5; y ¼ x tanðaÞ, and x ¼ 1:0. At the bottom of

the domain, we imposed symmetry boundary conditions, while on the rest of the boundary, we set the

analytical solution as a Dirichlet condition. For our simulations, we have used Q ¼ 2; N
*

¼ 0
*

, Re ¼ 1 (since
we are dealing with Stokes flow) and zero initial conditions for the velocity components. The convergence

of the spatial error is exponential as demonstrated in Figs. 2 and 3. Here, and in all subsequent simulations,

we have set f
*

¼ 0
*

(null body force term), and whenever we tested the spatial accuracy of the method, we

ensured that the value of the time step was kept small enough in order to make the temporal discretization

errors negligible.
Fig. 1. Grids for the Hamel flow computation with (a) a ¼ 5� (b) a ¼ 20�.



Fig. 2. Convergence plot for the Hamel flow with a ¼ 5� : j; E ¼ kuc � uekL1 ; d; E ¼ kvc � vekL1 ; �; E ¼ kuc � uekL2 ;
s; E ¼ kvc � vekL2 .

Fig. 3. Convergence plot for the Hamel flow with a ¼ 20� : j; E ¼ kuc � uekL1 ; d; E ¼ kvc � vekL1 ; �; E ¼ kuc � uekL2 ;
s; E ¼ kvc � vekL2 .
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5.2. Wannier flow

As a second test case, we considered the steady Stokes flow past a rotating circular cylinder close to a

moving wall. By the aid of this problem, we were able to study the performance of the multidomain method

in a curvilinear topology. This problem has been used in the past for code verification purposes (for ex-

ample see [13,15,32–34]). The exact solution is given by the relations:
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ueðx; yÞ ¼ U � 2ða1 þ a0y1Þ
sþ y1
k1

�
þ s� y1

k2

�
� a0 ln

k1
k2

� a2
k1

s

 
þ y2 �

ðsþ y1Þ2y2
k1

!

� a3
k2

s

 
� y2 þ

ðs� y1Þ2y2
k2

!
;

veðx; yÞ ¼
2x
k1k2

ða1 þ a0y1Þðk2 � k1Þ �
xa2ðsþ y1Þy2

k21
� xa3ðs� y1Þy2

k22
;

where:

s2 ¼ d2 � r2; C ¼ d þ s
d � s

; a0 ¼
U
lnC

; a1 ¼ �d a0

�
þ r2x

2s

�
;

a2 ¼ ðd þ sÞ a0

�
þ r2x

2s

�
; a3 ¼ ðd � sÞ a0

�
þ r2x

2s

�
; y1 ¼ y þ d;
y2 ¼ 2y1; k1 ¼ x2 þ ðsþ y1Þ2; k2 ¼ x2 þ ðs� y1Þ2:

The cylinder radius was presumed r ¼ 0:25, the distance from the center of the cylinder to the moving wall
was d ¼ 0:5, the velocity of the moving wall was U ¼ 1 and the angular velocity of the rotating cylinder (in

a counter clockwise sence) was x ¼ 2. The spatial domain was X ¼ ð�1:5; 3:0Þ � ð�0:5; 2:5Þ � Nð0; 0:25Þ,
where Nð0; 0:25Þ is the circle of radius 0.25 with its center at 0.0. The detailed grid, for N ¼ 11, is displayed

in Fig. 4. In all our simulations we have used 28 subdomains and Dirichlet boundary conditions. The initial

conditions used for the velocity components were zero in some simulations and equal to the exact steady

state solution (which is not the solution of the discrete system of equations) in some others. The conver-

gence to steady state proves the good behavior of the method to different but compatible initial conditions.

The results of the p-convergence studies of the flow are presented in Fig. 5. Very good agreement in the
results is found by comparison with [33], although Sherwin and Karniadakis have used more subdomains in

their spectral element simulations. At this point, we feel necessary to say that the combination of the LU-

factorization technique at the curvilinear subdomains around the cylinder, with the matrix-diagonalization

technique, used for all the other orthogonal subdomains, was confirmed to be very efficient. Moreover, at
Fig. 4. Grid for the Wannier flow simulation.



Fig. 5. Convergence plot for the Wannier flow: j; E ¼ kuc � uekL1 ; d; E ¼ kvc � vekL1 ; �; E ¼ kuc � uekL2 ; s; E ¼ kvc � vekL2 .
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corner points where three or five subdomains meet, the present weak formulation faces no difficulty in

contrast with the strong form of the spatial approximation method.

5.3. Kovasznay flow

In this section, we test our numerical method in the context of Navier–Stokes computations. The

Kovasznay flow field represents the steady low speed flow of a viscous fluid past an array of cylinders. It is

given by the following relationships:

ueðx; yÞ ¼ 1� ekx cosð2pyÞ;
veðx; yÞ ¼
k
2p

ekx sinð2pyÞ;

where k ¼ Re=2� ððRe2=4Þ þ 4p2Þ1=2. The equations were solved in the domain X ¼ ð�0:5; 1:0Þ�
ð�0:5; 1:5Þ and the finest mesh is shown in Fig. 6. In our simulations, we used 16 subdomains, Dirichlet

boundary conditions for the velocity components and a Reynolds number equal to 40. Spectral accuracy is

demonstrated for this laminar solution in Fig. 7.

5.4. Taylor–Green vortex

We proceed with a transient flow problem, namely the Taylor–Green decaying vortex system. This test

case helped us study the temporal accuracy of our numerical method and has been also used in [5,14],

among others. The spatial solution domain was X ¼ ð0; pÞ2 and the analytical solution of the Navier–

Stokes equations, with Re ¼ 1, for this problem read:

ueðx; y; tÞ ¼ � cosðxÞ sinðyÞe�2t;
veðx; y; tÞ ¼ sinðxÞ cosðyÞe�2t;



Fig. 6. Grid for the Kovasznay flow computation.

Fig. 7. Convergence plot for the Kovasznay flow:j; E ¼ kuc � uekL1 ; d; E ¼ kvc � vekL1 ; �; E ¼ kuc � uekH1 ; s; E ¼ kvc � vekH1 .
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peðx; y; tÞ ¼ � 1

4
ðcosð2xÞ þ cosð2yÞÞe�4t:

First, we used a four subdomain partition of the computational domain and concerned ourselves with
spatial accuracy. To this end, we used a time step Dt ¼ 10�5 and computed the discrete H 1-norms after 100

time steps. The structured grid, for N ¼ 14, is shown in the first part of Fig. 8, while the convergence plot in

Fig. 9. From the diagrams, it is obvious that the errors in the velocity components are graphically indis-

tinguishable. Moreover, we confirmed the success of our first-order accurate time starting scheme, since it

did not cause any increase of the error in the first steps of this transient simulation. In order to measure the

time accuracy of the method, we sustained the same subdomain topology but used a polynomial order

equal to 14 in each subdomain and evaluated the discrete L2-norm of the error after one time unit. The
Fig. 8. Structured (a) and unstructured (b) grids for the Taylor–Green vortex simulation.

Fig. 9. Convergence plot for the structured configuration of the Taylor–Green vortex problem: m; E ¼ kuc � uekH1 ;

d; E ¼ kvc � vekH1 ; j; E ¼ kpc � pekH1 .



Table 1

Temporal accuracy results for the Taylor–Green vortex problem

Dt kuc � uekL2 kvc � vekL2 kpc � pekL2
10�1 5:15� 10�4 5:17� 10�4 3:59� 10�3

10�2 1:67� 10�6 1:67� 10�6 4:21� 10�5

10�3 1:36� 10�8 1:35� 10�8 4:42� 10�7

10�4 1:32� 10�10 1:32� 10�10 4:44� 10�9

10�5 1:28� 10�12 1:28� 10�12 3:93� 10�11
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results are displayed in Table 1. Second order temporal accuracy is demonstrated for all of the flow

variables.

Next, we solved the Taylor–Green vortex problem on an unstructured subdomain configuration shown

in the second part of Fig. 8. Exponential convergence was achieved for both the velocity and pressure
variables in the H 1-norm, as presented in Fig. 10. It is obvious that by using the weak collocation method,

we have overcome many of the restrictions of the traditional strong formulation and extended the appli-

cability of patching collocation methods to more complicated geometries. In all the above simulations of

the Taylor–Green vortex system, we used the exact solution as initial condition as well as time-dependent

Dirichlet boundary conditions.

5.5. Regularized lid driven cavity flow

The regularized lid driven cavity flow test case is very popular among spectral modelers. Since there is no

analytical solution available, we compare our computational results with the ones produced by other au-

thors (see [16,35]). We refer directly to [16] and references therein.

In our work, we calculated only steady flows, for two different Reynolds numbers. The spatial domain
was X ¼ ð0; 1Þ2 and the boundary conditions read:
Fig. 10. Convergence plot for the unstructured configuration of the Taylor–Green vortex problem: m; E ¼ kuc � uekH1 ;

d; E ¼ kvc � vekH1 ; j; E ¼ kpc � pekH1 .
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uðx; 1Þ ¼ �16x2ð1� xÞ2;
vðx; 1Þ ¼ 0

for the top lid and u ¼ v ¼ 0, for all the other stationary walls. In all simulations, we started with zero

initial conditions for the velocity field. The comparisons were carried out on the extremum values of

vorticity at the moving lid, from the spectral solution interpolated on a uniform 201� 201 grid, along with

the location of that vorticity value computed. We denote these variables by M ¼ maxx2½0;1� jxðx; 1Þj and xM .
We used a four subdomain configuration of equal area, and the results along with the time steps utilized at
each computation are presented in Tables 2 and 3, for Reynolds numbers Re¼ 100 and 400, respectively.

For comparison, the results of the single domain method are reported in Table 4. We see a very good

agreement with the results of Hugues et al. despite the fact that they used one domain and a strong

Chebyshev collocation approximation. The overall conclusions we drew from this test case, is the spectral

convergence of vorticity, which is a secondary variable computed from the velocity field, the robustness of

the method as far as the impulsive starting of the lid is concerned, along with the observation that the usage

of weak collocation updating upgraded the already stable behavior of the method at marginal resolutions.

5.6. Axisymmetric flow inside a stenosed pipe

In this last problem, we face a more realistic situation, namely the fluid flow through an axisymmetric

pipe presenting a constriction. This problem has already been considered in [36], where it was treated by
Table 2

Simulation parameters and characteristic flow variables for the regularized lid driven cavity flow at Re¼ 100 with the four subdomain

configuration

N Dt M xM

8 0.050 13.6130 0.616

10 0.050 13.4752 0.621

12 0.020 13.4500 0.621

16 0.020 13.4440 0.621

Table 3

Simulation parameters and characteristic flow variables for the regularized lid driven cavity flow at Re¼ 400 with the four subdomain

configuration

N Dt M xM

8 0.020 25.7757 0.601

10 0.020 25.5905 0.616

12 0.020 25.1141 0.626

16 0.010 24.9279 0.626

Table 4

Simulation parameters and characteristic flow variables for the regularized lid driven cavity flow with the one domain configuration

Re N Dt M xM

100 32 0.050 13.4447 0.620

400 32 0.027 24.9107 0.630



Fig. 11. Axisymmetric stenosed pipe flow computation (a) grid, (b) axial velocity component, (c) radial velocity component,

(d) pressure, (e) vorticity.
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finite volume methods utilizing either pseudocompressibility or pressure correction temporal discretization

schemes. In our simulation, we used a high resolution mesh, part of which is shown in Fig. 11, while the

actual dimensionless streamwise coordinate extended up to 25.73. The boundary conditions used were no-
slip conditions for the velocity components on the upper boundary, symmetry conditions on the lower

boundary, while on the left boundary we used the following inflow conditions:

u ¼ 1� y2; v ¼ 0;

and on the right computational boundary we imposed custom outflow boundary conditions:

ou
on

¼ 0; v ¼ 0; p ¼ 0:

The computations were started from rest and were performed for a Reynolds number of 100. The overall

topology was comprised by 13 subdomains. Simulations were conducted with various polynomial orders in

each subdomain. Almost identical results (within graphical accuracy) were found when N ¼ 16 and N ¼ 20,

so for the sake of brevity we report only the results produced by the higher resolution simulation. Contour
plots of the basic flow fields are presented in Fig. 11. We observe the vorticity to be C1 continuous across

the subdomain boundaries, although the spatial approximation method does not even ensure the C0

continuity of this variable.

For validation purposes, the solution of this last test problem was also obtained by a simulation code

which utilized a pseudocompressibility time integration method along with a flux vector splitting finite

volume technique for the spatial discretization (similar to [36]). In Fig. 12 we show the axial distribution of

pressure and in Fig. 13 several axial velocity profiles around the stenotic part of the pipe are displayed, as

calculated by the two different methods. We denote by Dx0
u the maximum absolute value of the difference

between the axial velocity components as computed by the two methodologies, over all the nodes of the

finite volume grid with constant axial coordinate x ¼ x0. The values Dx0
v and Dx0

p are defined in a similar way

for the radial velocity component and pressure, respectively. These differences, which are calculated after a

suitable projection of the spectral solution (with N ¼ 20) on the 443� 35 grid used by the finite volume



Fig. 12. Axial distribution of the pressure variable for the axisymmetric stenosed pipe. Continuous line: spectral solution. Dashed line

with circles: finite volume solution.

Fig. 13. Axial velocity profiles for the axisymmetric stenosed pipe simulation at (a) x ¼ 2:43; (b) x ¼ 3:87; (c) x ¼ 5:30; (d) x ¼ 6:98

Continuous line: spectral solution. Dashed line with circles: finite volume solution.
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Table 5

Differences of the basic flow variables as calculated by the spectral and finite volume codes for the axisymmetric stenosed pipe flow

x0 Dx0
u Dx0

v Dx0
p

2.43 1:38� 10�3 1:41� 10�3 9:57� 10�3

3:87 5:61� 10�3 4:09� 10�4 8:64� 10�3

5:30 6:04� 10�3 5:97� 10�4 3:20� 10�3

6:98 3:30� 10�3 1:88� 10�4 2:73� 10�3
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code, are reported in Table 5, for the specific axial positions presented in Fig. 13. Very good agreement was

concluded.

With the aid of this problem, we were able to test our methodology in a spatial domain with corners in

which a strong collocation method does not give adequate results, because the boundary as well as the grid
is only C0 and not C1 continuous across elemental boundaries. Moreover, we need to say that the present

method behaved satisfactorily and did not face any difficulty neither by impulsive starting nor by the form

of the outflow boundary conditions. Finally, we conclude our discussion by stating that our treatment of

the axis singularity by means of the modifications (15), was successful and made the weak collocation

method applicable to domain decomposed topologies for axisymmetric simulations.
6. Conclusions

In this paper, we have presented a weak Legendre spectral collocation method, for the solution of the

incompressible Navier–Stokes equations in two-dimensional and axisymmetric geometries. This method

combines a second-order accurate temporal discretization projection method, with a weak collocation

approximation for the spatial discretization of problems in decomposable topologies. The time integration

method leads to a family of elliptic kernels to be solved at each time level and the spatial approximation

method proceeds with discretizing these elliptic problems by using a weak formulation of the Legendre

spectral collocation method in multiple subdomains. The treatment of subdomain interfaces results nat-
urally from the discrete variational formulation of the problem. Moreover, we have furnished a weak

formalism for the influence matrix technique, in order to successfully decouple the solution of the global

system of discrete equations into a series of successive solutions to less expensive problems on the sub-

domains and on their boundaries. We also proposed a method of avoiding the singularity problem en-

countered by the weak formulation at axisymmetric problems and studied a combination of direct methods

for solving the linear algebraic systems that stem from the spatial discretization. Several examples have

been included in order to show the behavior of the method on both Stokes and Navier–Stokes simulations.

Spectral accuracy was demonstrated on all problems for which exact solutions were known. For the case of
problems for which no analytical solution is available, our results were proven to be in very good agreement

with other methods including strong spectral collocation approximations as well as finite volume discret-

izations. The results of various test cases considered, indicated the robustness of the method with respect

both to initial as well as to boundary conditions.

The present methodology was designed in order to overcome some difficulties faced by the strong col-

location formulation when applied to multiple domains and complicated geometries. By using the weak

formalism, we succeeded in approximating elliptic partial differential equations with increased accuracy,

since the imposition of Neumann (or Robin) boundary conditions at the corners of the domain is being
done in a natural way. The same applies to interface points at which more than two subdomains meet and

to corner points that simultaneously belong to the interface and to the Neumann portion of the boundary.

In such situations, the conditions imposed by a strong collocation method are totally unclear. The weak
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formulation is also better than the spectral flux balance interface technique, since it is imposed pointwise

and does not require any integral evaluations. Moreover, the global flux balance method does not function

satisfactorily when applied to domain decomposed problems with Neumann boundary conditions. The

present method is based on a modified variational formulation and as a consequence it can easily treat

unstructured subdomain decomposition as well as grids or boundaries which are not C1 continuous. The

proposed combination of the influence matrix technique with the LU factorization and matrix-diagonal-

ization methods for the solution of the linear systems was found to be very computationally efficient, while

the complete decoupling of the solutions in the subdomains and on the interface (which initially results
from the modified discrete variational formulation) constitutes this method as a useful alternative to

existing spectral element algorithms.
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